Person Identification and Gender Recognition from Footstep Sound using Modulation Analysis

نویسندگان

  • Chasity DeLoney
  • Nima Mesgarani
  • Jonathan Fritz
چکیده

We describe a person identification system that is based on classifying the sound of the footstep. The classification is done on the spectrotemporal modulations of sound that are estimated using a model of auditory processing. We describe how different footsteps form a unique footprint in the spectrotemporal modulation domain and how this representation captures the user specific signatures. Using this representation, we achieved higher than 60% accuracy in identifying 9 people with three different shoes and two floors. The study demonstrates the efficacy of the spectrotemporal features in the tasks examined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Process Person Identifier Based on Simple Floor Sensors

This paper describes methods and sensor technology used to identify persons from their walking characteristics. We use an array of simple binary switch floor sensors to detect footsteps. Feature analysis and recognition are performed with a fully discriminative Bayesian approach using a Gaussian Process (GP) classifier. We show the usefulness of our probabilistic approach on a large data set co...

متن کامل

Person identification using biometric markers from footsteps sound

Human identification using unobtrusive methods is a challenging problem that has many applications in surveillance tasks. In this work we propose a set of biometric features extracted from a footstep audio signal that can be used to identify a person. Instead of using short-time spectral domain, Teager-Kaiser energy operator is employed to transform a time-domain signal into a representational ...

متن کامل

Effect of sound classification by neural networks in the recognition of human hearing

In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...

متن کامل

Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...

متن کامل

Gait Analysis for Recognition and Classification

This paper describes a representation of gait appearance for the purpose of person identification and classification. This gait representation is based on simple features such as moments extracted from orthogonal view video silhouettes of human walking motion. Despite its simplicity, the resulting feature vector contains enough information to perform well on human identification and gender clas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008